ON STRONGLY g(x)-CLEAN RINGS
نویسندگان
چکیده
Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are given, and strongly g(x)-clean rings generated by units are discussed.
منابع مشابه
On strongly J-clean rings associated with polynomial identity g(x) = 0
In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.
متن کاملOn $\mathbb{Z}G$-clean rings
Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...
متن کاملWEAKLY g(x)-CLEAN RINGS
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
متن کاملExtensions of Regular Rings
Let $R$ be an associative ring with identity. An element $x in R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if there exist $g in G$, $n in mathbb{Z}$ and $r in R$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). A ring $R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if every element of $R$ is $mathbb{Z}G$-regular (resp. strongly $...
متن کاملSome classes of strongly clean rings
A ring $R$ is a strongly clean ring if every element in $R$ is the sum of an idempotent and a unit that commutate. We construct some classes of strongly clean rings which have stable range one. It is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008